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ABSTRACT 
In this paper it is shown that various existing constructions of 'Hopf in- 
variant' are equivalent to each other. In consequence one gets that the one 
Toda-Hopfinvariant enjoys various properties. 

O. Introduction 

In 1956, Toda [7] introduced his Hopf  invariant. Since then other authors 
have given alternate constructions of  this invariant. In this paper we show that 
these constructions are equivalent. Each construction has certain properties 
which are convenient. Hence, it is a consequence of  this paper that there is one 
T o d a - H o p f  invariant with all of these properties. 

First, there is the original definition of Toda which was expressed in modern 
form by Selick in [6]. Let p be an odd prime. I f J  o _ 1(S 2~) denotes the ( p - 1)- st 
filtration of the James construction, then the T o d a - H o p f  invariant is a map  
D, Jp_ 1(S 2n- 1)_~ flS2np- 1 for which the homotopy theoretic fibre localized at p 
is S 2~ - 1. This definition is based on a retraction o f f l ( J  o _ t(S 2~) v S 2~tp - o) onto 
the homotopy theoretic fibre of  the natural map 

~ ( J p  _ i ( S  2n ) v S 2n(p -1)) . .~ ~.~(jp _ l ( S 2 n )  X S 2n(p -1)). 

As Toda realized, this definition is natural with respect to self maps o f S  2" and 
this fact leads to certain consequences concerning the exponents of  the odd 
primary components  of the homotopy groups of  spheres. 

t Both authors supponed in part by the NSF. 
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Second, Gray [2] gave a definition which he based on a retraction of 
D.Jp_ 1(S 2~) onto the homotopy theoretic fibre of the natural map D,./p_ 1(S 2n) --* 

I)S 2ntp-l). He has shown that this definition gives a Toda-Hopf  invariant 

which when localized at p is a H- map. We show in Section 3 that this definition 

may be based on a retraction of f~(J~_l(S 2n) v S 2nt~-l)) onto the homotopy 
fibre of  the natural map ['~(Jp_ i(S 2n) V S 2n(p -1))__~ ~-~s2n(p- 1) 

Third, Gray [4] gave a construction of a classifying space for the fibre of  the 
double suspension ]~2 : sen - l _~ ~2S2n + 1. Using this, he gave another construc- 

tion of a Toda-Hopf  invariant. We show in Section 4 that his construction 
may be based on a retraction of D(Jp_~(S 2n) v S 2n<p-~)) onto the homotopy 

theoretic fibre of  the natural map 

~~( Jp _ l ( S  2n ) v S 2n(p -1)) ~ ~.~( jp_ 1s2n).  

In the course of this, we give an alternate but equivalent construction of a 

classifying space for the fibre of the double suspension. 

In Section 2, we show that equivalent Toda-Hopf  invariants come about 

from constructions based on retractions of f~(Jp_l(S 2n) v S 2ntp-~)) onto the 

three homotopy theoretic fibres mentioned in the three preceding paragraphs. 

Section l contains preliminary facts concerning these fibres and certain 

evaluation maps. 

We would like to thank Paul Selick for helpful conversations. 

1. Evaluation maps and certain fibrations 

In this paper space will mean well pointed space having a compactly 

generated topology, t Connected will mean pathwise connected. The 1-sphere 
will be denoted S l and it will be supposed to be the unit interval with end 

points collapsed, i.e. S ~ = I/(0, 1 }. If X and Y are spaces, the space of maps 

from Xto Ywill be denoted by Map(X, Y). The reduced suspension of Xis the 
space S ~ ̂  X, and is denoted EX. The path space of  X is the subspace P(X) of  

Map(I, X) consisting of those paths starting at the base point ..  The canonical 

map n : P ( X ) - ~ X  such that rt(~o)-- ~(1) is a fibre map with fibre D(X)=  
zt-1(,), the space of loops in X. The pair (P(X), f~(X)) is an NDR pair. 

In studying Toda and related Hopf  invariants one looks often at the 

* Usually the convention and often the notation of [7] will be followed. 
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following situation: suppose that A and B are connected spaces. There is a 
diagram 

A v B  

A & A × B ~ B  

where t is the canonical inclusion, and p and q are the projections to the factors. 
Then one makes t, pl, and qi into fibrations and looks at the induced maps 
between the fibres, and at combinations with suspensions, loops, evaluations, 
etc. To this end it will be convenient to look at some special joins and half 
smashes. 

Special joins and half smashes of spaces X~ and )(2 are defined when, instead 
of just spaces, one has NDR pairs (C~, X~) and (C2, X2) such that C~ and C2 are 
contractible as pointed spaces. In this situation the special join of X~ and X2 is 
the space C~ × X2 tJ X~ × C2. Abusing notation it is denoted by X(-fX2, except 
in the standard case where C~ is the reduced cone over X~ and C2 is the reduced 
cone over X2 and one obtains XI • )(2, the reduced join. The left half smash of 

Xl and X2 is 

X1 ~< X2 = XI × X2 \ X1 × *, 

the lifted left half smash is 

the right half smash is 

m 

XI I~, X2= X1 × X2 t.3 C1 × *, 

Xl >4 X2 = XI x X ~ \ .  xX2, 

and the lifted right half smash is 

x ,  = x ,  x u • x G .  

The canonical maps XI ~ X2-~ X~ ~< X2 and X~ >4 X2 ~ Xl >4 X~ are homotopy 
equivalences, since each is obtained by taking an NDR pair with contractible 

subspace and smashing the subspace to a point. 
The case of the preceding of particular interest is that where A and B are 

connected spaces, and the pairs in question are (P(A), ~(A)) and (P(B), £~(B)). 
In this case the space ~(A)--~(B) is called the path join of [I(A) and [I(B). 

If f :  X--- Y is a map with Y connected, we recall the standard way of making 
f in to  a fibration. Let 
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E I -- {(x, ~0) Ix EX,  ~o: I ~ Y, and f(x)  = (p(1)}, 

~f: Ef---, Y is defined by rcf(x, ~o)= (o(O), and tf: X-- ,Ef  is defined by zf(x)= 
(x, e~x)) where e~x) is the constant path atf(x) .  The space Xis identified using l I 
with its image in E z. Note before making this identification that E I is 
topologized as a subspace o f X  × Map(I, Y). Now Xis a deformation retract of  
El, xfz f = f ,  and xz is a fibration with fibre 

Ff = {(x, ~) [ (x, (o)~Efand ~(0) = *). 

Thus there is a pull back diagram 

Fs 

X 

? 
, P ( Y )  

f 
, Y 

where~x ,  ~) = ~, 7t'(x, ~) = x. This means that F I is just the total space of the 
fibration over X induced b y f f r o m  the path space fibration over Y. 

The preceding implies that for A and B connected when the inclusion 
t:AvB--. , .A X B  is made  into a fibration, then the path space join 
f~(A)--~f~(B) is the fibre. 

Suppose now A v B ----A is made into a fibration. That part of  the fibre lying 
over A is just P(A), while that part over B is f~(A) X B since B ----A is trivial. 
These match along f~(A) sitting o v e r . ,  and one has that the fibre is t2(A ) I>< B. 
Similarly, when A v B ~ B is made into a fibration the fibre is A >4 fl(B). 

In this situation one has natural maps 

ea" f l (A)-~f~(B)- '~(A)AB and eB" ~(A)-~(B)--*A Aft(B). 

The first of  these is the composite of the induced map between fibres 
f~(A)-~f~(B)--,I'I(A)NB followed by the natural map FZ(A)tgB--, 
f~(A) 1~ B --- f~(A) ^ B, and ea (2, ~) = 2 A ~(1). Obtaining eB similarly one has 
e,(2, ~) = 2(1) ^tL 

Now observe that (f~(A)--it2(B), P(A) v P(B)) is an NDR pair with contract- 
ible subspace. Pinching the subspace to a point  one obtains the special 
suspension Z'F~(A)Af~(B), which is the union of  contractible subspaces 
P(A) ^ t2(B) and ~(A) A P(B) meeting in fl(A) A f~(B) and where all appropri- 
ate pairs are contractible. 

For ~ a path and s E I ,  let ~0s he the path such that ~os(t) -- ~o(st). Next defne  

a" Zf/(A) ^ f~(B) --* Z'~(A) ^ f/(B) 
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by 

12zt ^ ~ for 0 < t _-< t, 
°t([t] ^ 2 A ~) = [2 ^ ~2_2t f o r ½ < t  < 1. 

Observe that a is a homotopy equivalence. 

The maps eA and en pass to quotients and composing with a, and again 

abusing notation, one has 

eA : Y.Q(A)AQ(B)-.Q(A)AB, 

en : Z~a(A) A Q(B)---,A A Q(B) 

where eA([t]A2 AO) is * for 0 < t < ½  and 2AO(2- -2 t )  for ½_<t= < 1, and 

en([t] A2 AO) = 2(2t) ^ ~ for 0 _< t < ½ and * for ½ < t =< 1. 

and 

Now define 

e]:T.~'~(A)A~(B)---~~(A)AB by e ~ ( [ t ] ^ 2  A ¢ ~ ) = 2  AO(1 --  t),  

e 'n 'ZQ(A)AQ(B)~A AQ(B) by ek([ t lAAAO)=A(t )A~.  

NORMALIZATION LEMMA. With the definitions above, eA and e] are homo- 
topic, and en and e'n are homotopic. 

Define D : I × ZQ(A ) A Q(B) -~ Q(A) A B by 

D(s, [t] A2 A ~)= {A2 A~(1-- st), O < t < ½ 
A ~ ( 2 - - 2 t - - s + s t ) ,  ½~t<=l. 

Observe that D is a homotopy from eA to e,~. A similar homotopy connects 

en to e~. 
Next, for X a space recall the standard evaluation map eval : Y.Q(X)~ X 

where eval([s] A2) = 2(S), and its homotopy inverse - eval : Z Q ( X ) ~ X  

where - eval([s] A 2) = 2(1 -- S). 

Returning to the situation where A and B are connected spaces, 

eval A In : ZQ(A) A B ~ A  A B, and 1A A eval : A A ZQ(B) ~ A  A B; combining 

these with Ze] and Ze~ one obtains 

0A, 0n: x2t (a) ^ ^ B, 

where 0,~ = (eval A In) ° Ze] and On = (1A A eval)o Ze~. Then 

OA([s]^[t]^2 - t), and On([s]^[t]^2 ^ 6 ) = 2 ( t ) ^ 6 ( s ) .  
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PROPOSITION. l f  A and B are connected spaces 

OA, On: Z2Q(A)^Q(B) - - - 'A  ^ B  are homotopic.  

First note that fl: S ~ = S t ^ S t--, S z defined by fl([s] ^ [t ]) = [t] ^ [1 - s] is of 
degree 1, and hence homotopic to the identity. Since Os = OA o fl the proposi- 
tion follows. 

2. Splittings, Toda-Hopf invariants, Gray invariants, and relations between 
these 

Suppose that A and B are simply connected so that Q(A) and Q(B) are 
connected. Assume 7[ : E ~ A  X B is a fibration with simply connected fibre F, 
fA :A ~ E ,  7[fA (a) = (a, ,)  for a CA, fn : B ~ E ,  7[fs(b) = (*, b) for b EB,  and 
j : F--* E is the inclusion. Now one has that the composite 

Q(A) X Q(F) × Q(B) " , Q(E) X Q(E) X Q(E) " ,  Q(E) 

is at least a weak homotopy equivalence where a -- Q(fA) X ~( j )  X Q(fn) and 
~03 is the threefold multiplication map. 

Either assuming the homotopy type of CW-complexes or inverting weak 
homotopy equivalences to form the homotopy category one has a natural 
map Q(E) ~ Q(F) obtained by taking the inverse of the above and projecting 
on the factor Q(F). Next observe that p7[:E ~ A  is a fibration with fibre 
F A = 7[-1(* X B), and that fA is a section of pg. Letting JA : FA - , ' E  be the 
inclusion one has that the composite 

Q(A) × Q(FA) ~ Q(E) X Q(E) ~' , Q(E) 

is an isomorphism in the homotopy category where fl = Q(f~) X Q(JA). How- 
ever, one also has that the composite 

Q(F) × Q(B) a , Q(Fa) X Q(Fa) 0,, Q(Fa) 

is an isomorphism where ~ = Q ( j ) ×  ~(.0). The composite ~(E)---Q(Fa)--" 
Q(F) is the map obtained earlier. 

Proceeding similarly with q T [ : E ~ B ,  and 7[-t(A × . ) = F n ,  one has the 
homotopy equivalence Q(Fn)× Q ( B ) - . ~ ( E ) ,  and Q(E)--*Q(Fn) in the 
homotopy category. Then the homotopy equivalence Q(A) × Q(F)--* Q(Fn), 
and the composite Q ( E ) ~  Q(Fn)~ f~(F) is the same map as before in the 
homotopy category. 
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In the preceding section the diagram 

A v B  

P q 
A ,  A × B  , B  

was considered, and the maps t, pi, and qi were made into fibrations. The 

considerations of the preceding paragraph apply to ni : Ei --,A × B. The fibre 

of n~ is canonically equivalent with Z~(A)^ f~(B), and since the homotopy 

type of A v B is that of E~ canonically one has the pre-Toda-Hopf invariant 
T':f~(A v B)---,~(Z~(A)A~(B)). Further, one had that the fibre of pi was 

equivalent with ~(A) N B; the considerations of the preceding paragraph show 

that ~(~(A)NB)  is equivalent with ~(Z~(A)^f~(B))X f~(B). Similarly, 

looking at qi one has f~(AN~(B)) is equivalent with f~(A)× 

n(Yf~(A) ̂  n(B)). 

In order to obtain Toda-Hopf invariants the space A must have more 

structure. However, before proceeding the Gray invariants [3] will be in- 

troduced. 

Thus suppose that (X, Y) is an NDR pair with X and Y connected. Let A be 

the union of X and the cone over Y. There is a natural map O:A ..o. ZY which 

smashes Xto a point. Gray's procedure is to take a combinatorial model for the 

homotopy fibre of 0, and then to construct various maps with this as domain. 
Here a direct study of the homotopy fibre will be substituted. Hence let 

F , P(ZY) 

A 0 , ZY 

be a pull back diagram. Thus Fis a fibration overA with fibre f~(ZY), and that 
part of the fibration which lies over X is trivial since O(X) = ,. Thus there is a 

canonical inclusion l: X × f~(ZY)---F. Since Z(X × f~(ZY)) is canonically 

homotopy equivalent with ZXv Zf~(ZY)vZX^ fl(ZY), there is induced a 
map ~' : ZX v ZX ^ K~(ZY) --" Ear. 

PROPOSITION. The map V ' Z X v Z X ^ ~ ( Z Y ) - - , Z F  is a weak homotopy 
equivalence which is a homotopy equivalence if(X, Y) has the homotopy type of 
a CWpair. 

PROOF. Suppose homology means homology with coefficients in a field. 
Filter P(ZY) by letting filtration zero be t~(ZY) = ~t- ~(.), and filtration one be 
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P(ZY), and filter Fby taking inverse images under/). These result in two small 
homology spectral sequences. In that for P(ZY), 

E~., = H ,  (~I(Z Y)). E~., = H,(ZY. , )~H,(~(ZY)) .  

and d I :El . ,  2. [-I,(~(ZY))CE~., where a dot over homology indicates 
reduced homology. In that for F. 

E~,, = H,(X) @ H,(fl(Z Y)) = H,(f~(Z Y)) ~/-/ ,(X) @ H,(~(Z Y)), 

E~., = H,(A, X)®H,(~(ZY)),  and essentially by excision H,(A, X) 
H,(ZY, ,). Thus d t'. El.,l 2. //,(~)(ZY))C E 10,,, and /-/,(F) is isomorphic 
with [-I,(X)®H,(£I(ZY)). This means that t' induces a homology isomor- 
phism with coefficients in any field and thus integrally. Since both the range 
and domain of l' are simply connected the proposition follows readily. 

The map ~' will be assumed inverted in an appropriate homotopy category. 

COROLLARY. The map 7 : ZX A ~)(ZY)--* Z(F/X) induced by l' is an equiva- 
lence. 

In the preceding situation the Gray invariant is the map G : F -* fl(X A ZY) 
obtained by taking the natural map F-*fl(~:F) and following it by 
a : ~'I(ZF)--* D.(X A E Y), where a is obtained by taking the composite 

,Y,F ~ Z(F/X) -" ZX A ~(Z Y) ,v~ X A Z Y 

and looping it. 
Higher Gray invariants [2], [3] may be defined by using an equivalence of ZF 

with the infinite bouquet Vn_>0 Z(XAAnY) rather than by using his com- 
binatorial equivalent of F. These are compatible with James-Hopf invariants 
obtained by using a corresponding equivalence of Zfl(ZY) with Vn~0 ZANY, 
e.g. [61. 

In this situation there is a coaction map ~/: .4 -*.4 v ZY. Its definition is now 
recalled. 

The cone over Y, C(Y) is I × Y/{1} X Y U I X ,, and the map ¥:  C(Y)-* 
C(Y) v ZY is defined by 

=I[2t, y]EC(Y) f o r 0 ~ t  < ½, 

¥[t ,y] [ [ 2 t -  1]AyEZY for½ <t_-< 1. 

Now there are push out diagrams 



308 J . C .  MOORE AND J. A. NEISENDORFER Isr. J. Math. 

Y ~ C ( Y )  Y , C ( Y ) v ~ , Y  

X , A X , A v T ,  Y 

and a map from the first to the second which is the identity on the left column 
and ~ at the upper fight corner. The coaction ¥ :  A ~ A  v ~Y is the resulting 
map of the lower right corners. Using also the comultiplication in ~Y one 
obtains a commutative diagram 

A ~ , A v T ,  Y 

~,Y ~ , T,Y v Y,Y 

Let  h ' Y , Y - - . E Y  be the composite T,Y ~ ,  Y, Y v Y ,  Y .vzr Ey,  and let 
0' :A ~ Y b e  hO. 

Recalling the procedure for making maps into fibrations from the first 
paragraph one has a commutative diagram 

F f  Fo ' Fo, 

Ee , E e, 

y , y  h , ~ ,y  

where the columns are fibrations and/~(a, ~) = (a, h o ~). Since the diagram 

A ~ ,  A v T ,  Y 
e, 

T,Y zY , ~ ,y  

commutes, one has a commutative diagram 

F0, , F ~  

Eo, , 

I;Y zY ~ y  

where the columns are fibrations. Recall that F~ is naturally equivalent with 
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A :xl ta(ZY) which maps naturally to A A fl(ZY). Since nqi has a natural cross 
section, ~(E~i) splits as earlier and one obtains 

ta( A ) --. f~( Eo ) --* K~( Eo,) --* K~( Eq, ) ~ n (  Fq, ) --- ta(A A f~(X Y)). 

However ZA A fl(ZY) ~ A  A ZY by evaluation, and so A A f~(ZY) 
K~(ZA A fl(Z Y)) --* ta(A A Z Y). Looping this and comparing with the preceding 
gives T~ : ta(A)---t22(A ^ Z Y) which is the Gray version of a Toda-Hopf 
invariant. An elementary argument shows that the diagram 

ta(F) n(a), fl2(X A XY) 

ta(A) r, , tT(A ^ XY) 

commutes in the homotopy category. 
The fibration 7~qi is equivalent with that qTri, and in the homotopy category T~ 

can be obtained in the fashion of Toda. One has 

~(A) ~ ) ,  ~ (AvZY)  r '  ~(]E~(A)A~(ZY)) 

where T' is the pre-Toda-Hopf invariant. Further Z~(A)A~(ZY)--- 
A A ~(Y.Y), and so using one of the compositions above, Z~(A) A ~(Z Y) 
~(A A Z Y). Looping this and composing one obtains /'1 in the homotopy 

category. 
In the situation at hand there is another and possibly more basic Toda-Hopf 

invariant T2 : fl(A)--- fl(A A Y). It is obtained by composing 

n(X~(A)^~(XY)) ,~ov~,~ n(~(A)^XY) ,~ev~ ~ ( A ^ Y )  

with T 'o  fl(V). Now l: fl(A A Y)-~ fl2(ZA A Y)-~ fl2(A A ZY) and composing 
with T2 gives the negative of T~ in the homotopy category. Indeed, expressing 
one of the pieces of/'1 in an adjoint form, one has Zfl(A)A Z Y - " A  A Z Y  is 
given by [ r ] ^ ~ o ^ [ s ] ^ y - , ~ o ( r ) A [ S ] A y  and a piece of tT2 is given by 
[r] A ~0 A IS] A y -" ~0(S) ̂  [r] A y. Thus one may be obtained from the other by 
composing with an interchange of suspension coordinates which is of degree 
- 1 on an appropriate two sphere. 

3. The James construction and James and Toda-Hopf invariants 

First recall some standard properties of the James construction J(X) of a 
space X ([4], [5]). As a set it is the free monoid generated by X with the 
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relation • = 1, as a space it is the colimit of  the subspaces J,,(X) where Jn(X) 

consists of  the words of length < n, topologized as a quotient of  the n-fold 

product of  X with itself. For n = 0, J ( X )  = . ,  and for n > O, Jn (X) /Jn-~(X)  = 

An(x ) .  For X connected there is up to homotopy a well-defined map J ( X )  --.. 

fl(gX) which is an equivalence of  group like objects in the homotopy category. 

If X---ZY, and n > 1, it may be assumed that Jn(ZY)  is obtained from 

J . - I (EY) via a pushout diagram 

Z" -1A"y ---- C(Z" -lA"Y) 

J .  _ I ( zY)  --- J . ( X  F)  

Thus there is a coaction maP Jn (ZY) - - "J , , (XY)vEnAny .  The considera- 

tions of the preceding sections apply. This means that there is a Gray-Toda-  

Hopf  invariant 

T 1 : f~(J.(ZY)) --- f ~ ( J . ( Z Y )  ^ E"A"Y), 

and a Toda-Hopf  invariant 

T2 : ~ ( J n ( Z Y ) )  -"  f~(J, ,(ZY) ^ E" - IA"Y) .  

However, J,  (Z Y) ̂  Z n A" Y---- f~(Z2 y)  ^ Z" A" Y, and f2(g 2 Y) ^ E" A n Y--- 

y~f ,~(Z2y)^x ._ lAny  (e.~a), Z.+ lA.+ ,y .  Thus there is an extended Gray-  

Toda-Hopf  invariant 7~1 : f l(J.(Y~Y)) --- f22(Y.." + ~A" + i y )  which is the double 
loop of the preceding triple composite J . ( Y Y )  ^ Y."Any--" Z" + IA" +1 y com- 

posed with Tv 
If n > 2 there is also the composition 

J . ( E Y )  A Z"-IA"Y'--" O(Z2 Y) ^ E n - I A " Y  -" Z"A" + l y. 

Looping and composing with T2 gives rise to the extended Toda-Hopf  

invariant 7"2 : ta(J.(ZY))--- ta(Z"A" + l y). The composite of f~(Z"A" +~ Y)--- 

Q2(Z. + 1A. + 1 y)  with ~r 2 gives 7"1, since an additional interchange of factors has 

occurred. 
Until now the most interesting results have been in the case ZY = S 2m, 

m > 0. Suppose also that the prime 2 has been inverted. Then fl(S 2q) is 

canonically equivalent with S 2q- 1 X K~(S 4q- ~) for any q > 0. The composite of 
~-~2(s2m(n + 1)) ~ ~-~(S2m(n + 1)-  1) with 7'1 may be identified with 7'2, and one 

obtains T: K2( J . ( S  2m) ) --: f~(S 2m<" + 1)- ~). Additional information about T may 

be easily found (e.g. [2] or [4]). The next question to be considered is which 
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further standard localizations have the property that the homotopy fibre of  Tis 

s2m-1, and when does the fibration split. Note both of  these things always 
happen rationally. Start by using the Serre spectral sequence for P(Jn (S 2m)) 
.In(S TM) to compute the homology of  L2(,In (S TM))" Now Hq(.In (S TM)) -- 0 except 

for q = 2jm, j -- 0 , . - . ,  n, and one may assume a basis in degree 2jm is x j as 

denoted by its image in H,(J(S2m)). In the spectral sequence d ' =  0 for 
2 < r < 2m, and d2mx -- a a generator of  H2m_l(f2(J~(S2m))). Thus d2"~x j = 

jax  j-I  f o r j  = 1,. • . ,  n leading to the conclusion that one wants to invert all 

primes < n as well as 2, deal with simply connected spaces so localized, and 

compute with coefficients the integers also so localized. One also assumes 

m > 2. One obtains readily that 

H,(~(J~(S2m))) = E(a, 2m - 1)®S(b,  2m(n + l) - 2), 

the tensor product of  the exterior algebra with one generator a of  degree 

2 m -  l, and the polynomial algebra with one generator b of  degree 
2m(n + l) - 2. The only other nontrivial differential in the spectral sequence 

is d 2m~ and one may assume that d2m~(ax~) -- b modulo the right ideal 

generated by a. 
Looking at J~(S TM) ~ S zm~ one may suppose in homology x ~ ~ xn a generator 

of  H2m~(S2m~). A standard calculation shows H,(f~(s2m~))= T(C, 2mn - 1), 

the tensor algebra on one generator c of  degree 2mn - 1. As a Hopf  algebra 
H,(~(Jn(S2m)vS2m~)) is the coproduct of  the sub-Hopf algebras 

H,(F~(J~(S2m))) and H,(~(s2mn)). A basis for the primitive elements in degree 

2m(n + 1) - 2 is b and [a, c] -- ac + ca. The coaction map induces a map of 
spectral sequences of path fibrations, d2m~x n = c, and ax n ~ ax ~ + ax ~ which 

goes into b + ac modulo the right ideal generated by a. Since b is primitive, 
this means H,(f~(¥))(b) = b + [a, c]. Thus if H,(~2(s2m¢n+I)-I)) = 
S(bl, 2m(n + l) - 2), it may be assumed H,(f ' )(b)  = bl, which implies that 

the homotopy fibre of  T is S 2m-1. Suppose (n + l) is not a prime; there is a 
map S2m¢~+l)-l-~J~(S TM) which may be used to attach a cell to obtain 

J~ + 1($2=). Looping and composing 

~'~(s2m(n + 1)- 1) ~ ~-~(Jn(S2m)) T ~ [.~(s2m( n + 1)- 1), 

and the composite must be an equivalence in order to obtain the appropriate 

homology for f~(Jn + 1($2m)). 

PROPOSITION. Assuming primes less than or equal to n and 2 have been 

invented, then for m > 1 
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(1) i f  (n + 1) is not a prime ~(J,(S2m)) is equivalent with S2m-lX 
f~(s2m(n + I)- 1) in the homotopy category, and 

(2) i f  (n + 1)--p  is a prime there is a prefibration sequence S 2'~-1--, 
) r f (S2p _l)" 

The proposition follows readily from the preceding discussion. It is a slight 
strengthening of an old result of Toda [7]. 

COROLLARY. For p a prime greater than (n + 1), the exponent of  the 
homotopy of  Jn(S 2m) at p is pro(n+1)-1 and the exponent of the homotopy of  
Jp _ l(S 2m) at p divides p(~+ 1)m -2.  

PRoPosn'ms (Gray). Localized at p, the Toda-Hopf invariant 
T: f~(Jp_ i(s2m))--" f~(S 2°m- 1) for p an odd prime is an H-map. 

SKETCH OF PROOF. There is a fibration F--*Eo--,S ~'-~)r~ obtained by 
making the canonical map O:Jp_l(s2m)~s ~p-~)m into a fibration and a 
resulting Gray invariant G: F--, fl( Jp_2(S 2m) ̂  S ~p- l)m). However, one has 

jp  _2($2n) ^ S2(p - l)m _.~ ~.~(s2m + I) ^ S2(p - l)m (eval) $2 m + l ^ S2(p -I)m - I. 

Looping this composite and composing with G one has F"*['~(S2°ra), but 
f~(s2°m)fs2p"-~ X f~(s4pm-~). Thus there is an extended Gray invariant 
which will still be denoted by G : F ~ S 2pro- 1. Now it results immediately from 
earlier considerations that the diagram 

~(F) ata) 

is commutative in the homotopy category. Using work of one of us it can easily 
be shown that ~(~) has a section [2, Proposition 7]. Then ~(lr) is an 
epimorphism in the homotopy category as is ~(Tr)^ f~(~). This implies the 
desired result, i.e., that Tis  an H-map. 

PROPOSITION. I f  p is an odd prime, andre > 1, then localized at p, there is a 
map h : ~2($2m + 1) _., s2m- ~ such that the composite 

~2($2m+1) h , $2 m_l  E l ,  ~'~2($2m+1) 

is multiplication by p2 in the homotopy category. 
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SKETCH OF PROOF. Recall that up to homotopy there is a fibration 
sequence 

jp_t(s2m ) J )  ~-~(s2m+l) H) ~.~(S2pm+l ) 

where H is a p-th James-Hopf invariant. One has Hp = pZH ([2], [5]). Thus 
looking at D(H) which is multiplicative ~ ( H )  p = p n ~ ( H ) =  [~(H) p z, and 

f l ( H ) ( p  - pn) = O. Since p - pn = p(1 - pP-~), and (1 - p p - l )  is an auto- 

morphism in the homotopy category one has f l (H)p = 0, and there exists 
g:['~2(S2m+l)---)~-~(Jp_l(s2m)) such that ~ ( j ) g = p .  Next, since p P T =  

TJp_l( p), and pPT = Tp p since Tis an H-map, one has T( Jp-l(  p)  - pP) = O. 

Looking at the fibration sequence 

s2m_ 1 i [-~( jp _ l(s2m)) T) ~-~(S2pm_l), 

it follows that there exists f :~(Jp_l(S2m))--~S2m-I such that ( - -  

Jp_t(p)  - pP. Recall thatjJn_~(p ) = pj, and that fl(j)l = E 2. Now one has 

E2 fg  = n ( j ) t fg  = n ( j ) (  dp_ t( p ) - pP ) g = ( p - pP )l'~(j) g = p2( p p -  , _ 1). 

Since p p- ~ - 1 is an automorphism, the existence of an h hating the desired 
property follows at once. 

A result similar to the above using ~(T)  and factoring ~(E 2) was proved 
quite some time ago by one of us. However, once one knows that T is an H- 
map, looping again is not necessary. The preceding proof parallels in some 
ways the old proof of Toda [7] which gives for homotopy groups the corres- 
ponding fact. There is a considerably stronger result to the effect that p factors 
through the double suspension [1]. However, currently the stronger result 
seems considerably less elementary. 

4. Toda-Hopf invariants and dassiyfing spaces for the fibre of the double 
suspension 

In this section all spaces will be assumed localized at an odd prime p. 
Suppose 2_-<k, l < m ,  and j:Jk_l(S2m)---)~(s2m+l), and l : S  2 m - l ~  

D(Jk_ t(S2m)) the natural maps. Recall from the preceding section that there is 
a fibration sequence 

s2m_ 1 i , [.~(Jk_l(S2n)) T , ~-~(S2nk_l) 

for 2 _-< k =< p where T is the Toda-Hopf  invariant, and that this sequence is 
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split if k < p. Recall also that ~(j) i"  S 2m - i  .... ~'~2(s2rn + 1) is the double suspen- 

sion E 2, and that there is a fibration sequence 

jp_,(S~,,) J ,  ~($2m+1) n ,  f~(S2mp+l) 

where H is the p-th James-Hopf  invariant. The fibre of the double suspension 
will be denoted by C(m). 

There is a commutative diagram 

Jk_l(a2m)vS2m(k-l) f ,  Jk_l(S 2m) 

~~(s=m+l) v a2m(k-I) f ,  ~--~(s2m + 1) 

w h e r e f a n d f '  are the natural maps considered earlier but given a new notation 
so as not to conflict with that for the fixed prime. 

The pre-Toda-Hopf  invariant for the bot tom line is 

T'" ~~(~-~(S 2m + l) v S 2m(k - 1)) _.~ ~r-~(~-~2(s2m + l) A ~~(S 2m(k- i))) 

and the range maps naturally t o  ~'~(S 2mk- l). Clearly T is just the composite of 

the latter map with T' and then with f ( j  v 1)fl(@,), where V/is as before the 
coaction map. 

To proceed further, some facts about shifts of fibration sequences are 
needed. There are basically two ways to shift a fibration sequence, and they are 
equivalent. Thus suppose 

a u , B  , C  

is a fibration sequence of  connected spaces. There is a new fibration sequence 

Fu " Eu =" , , n 

obtained by making u into a fibration. This is the shift of the original sequence 

done by the first procedure. The second procedure will now be recalled. For Xa  
space let P'(X) be the space of  paths in X ending at the base point, and 
rt' : P'(X) --, Xthe  canonical fibre map defined by zt'(o0 = a(0). Note that this is 
exactly what would be obtained by making • --- Xinto  a fibration. Returning to 
the original fibration sequence, let 0~ : A6 --" B be the fibration over B induced 
by t~ from the fibration P'(C) --, C. Recall that 

E., = {(a, ¢ ) [ a  EA,  @: I---B,  and u(a) = (p(1)}, 
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It~(a, ~) - ~(0), A6 = {(b, rl) I b EB, tl EP'(C), and O(b) = r/(O)}. There is a 
commutative diagram 

F. " ,  E,, " ,  B 

J, fi 
~ ( C ) ~  Ae , B 

where A is the natural inclusion of the fibre, and 3(a, ~) = (q,(0), ~ o ~0). The 
rows are fibration sequences, 3 is a fibration with fibre P(A) which is con- 
tractible, and F, -- 3 -  l(f/(C)). The maps 3, 3 are homotopy equivalences, and 
thus the rows are isomorphic in the homotopy category. The lower row is the 
shift of the original fibration by the second procedure. Under reasonable 
hypotheses one may iterate shifting. In particular, if B and C are simply 
~nnccted the third shift exists and is equivalent with 

fi(A) ~"), ~(B) ~6), ~(C) 

canonically. Suppose now that one has a section of J, i.e. f :  C---B such that 
6 f =  l o  This splits the fibration sequence of loop spaces, and one has 
r:  f l (B)~  [l(A) such that rF~(u) = lo~A), r[l( f)  = . ,  and r is compatible with 
the left action of f~(A) on [l(B). In the homotopy category r is the unique 
morphism with these properties. 

The fact that one had a section of J can be expressed differently. Thus there 
is a commutative diagram 

• , C  , C  

A u a , B  , C  

with the rows fibration sequences. Shifting by the second procedure one 
obtains a commutative diagram 

a ( c )  , P ' (C)  , c 

~I(C) s ,  A6 o,, B 

Thus j8 is null homotopic andcanonically so. Up to homotopy there is a unique 
choice of retraction h : A6 ---A, since there is a canonical map A ~A6 which is a 
homotopy equivalence. Thus there is a commutative diagram 
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~(C) J', A6 

P'(A) , a 

There results a commutative diagram 

~ ( 8 )  , ~ ( c )  , ,46 

~(A ) , P'(A ) , A 

LEMMA. The morphism s: ~(B)-- .  ~(A)  is up to homotopy the canonical 
retraction r: ~(B)  ~ f~(A). 

SKETCH OF PROOF. 

diagram 
Abusing notation a little, there is a commutative 

• , f l ( c )  " ,  f l ( c )  

t~(A) , f~(B) , f~(C) 

f~(A) -, t~(A) , • 

such that the first two rows are the triple shift of  the original diagram, and the 
bottom two rows are the shift of the preceding diagram. This implies the 
desired result. 

Now we return to the considerations at the beginning of the sec- 
tion involving the canonical maps j :  Jk- l( S2m)--~ ~(,.q2~+t) and 

f :  f~(S TM + ~) v S 2mtk- ~)--, ~2(S TM + '). Making both into fibrations one may 
obtain a commutative diagram 

(1) Fk_~(rn) , Ej " ,  f~(S 2"+1~) 

(2) ~2(s2m+l)~S2"<k-') , Ef it, ~~(S 2re+l) 

where the rows are the resulting fibration sequences, the diagram 

Jk_l(S 2m) , Ej 

~($2,,, + I) v S 2mtk- I) , El. 

is homotopy commutative, and the notation Fk_ ~(m) has been introduced for 
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the fibre of j .  The fibration sequence (2) has a canonical cross section. Let 
7tk_~(m):Fk_l(m)- 'S  2mk-~ be the composite of the canonical map 
D2(s2m + 1) I~ S 2m(k- ~) ~ S 2ink- ~ with a, and let B(m,  k) be the homotopy fibre 

of  rtk_ re(m). Indeed, this fibration sequence is denoted 

xk-t(m) s2m(k- 1) B(m,  k)--*Fk_l(m) 

The connecting morphism of the sequence (2) is canonically trivial since it 
splits c ,anonically. Then the connecting morphism of (1) lifts to 2 : f~2(s2m + 1) __. 

B(m,  k) well defined up to homotopy. 
Assuming k < p,  and abusing notation a little, there results a commutat ive 

diagram 

szm_ I p ,  f~2(S2m+l ) a B ( m , k )  

~'~(Jk_l(s2m)) ' ~ ' ) 2 ( $ 2 m + 1 )  ' Fk- l (m)  

['~(S 2ink-l) , p , ( s  2rot-I) ~ S2mk-1 

such that the center row is the second shift of  (1), the bot tom row is the 
canonical sequence indicated, and the preceding lemma is used with the first 
part of this section in seeing that the left column is the fibration sequence 
indicated. 

PROPOSITION. For 2 < k < p, and I < m, the spaces B(m,  k) are classify- 

ing spaces for the space C(m) which is the homotopy fibre for the double 
suspension E 2 : S 2m- 1~  [22($2m + 1). Moreover, in the homotopy category these 

spaces are isomorphic with those introduced by Gray. 

SKETCH OF PROOF. Returning to the preceding diagram, the properties 
already stated imply that the top row is a fibration sequence, and that the 
connectivity of B(m,  k) is greater than 2m. Then one may assume p = E 2, so 
that B(m, k) is as stated. It remains to see that the spaces B(m, k) are 
equivalent with those of Gray [4]. Thus a version of  Gray's construction will be 
recalled. 

Since Jk-1(S2m) may be obtained from Jk_2(S2m), by attaching a cell e 2re(k- l) 
by a map S 2"(k- 1)-1.._, Jk-2(S2m). Thus it may be assumed 

Jk_l(S 2m) = Jk_2(S TM) t9 e 2'~tk-l) 

by use of a mapping cylinder, and that the whole space modulo either subspace 
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gives an NDR pair. Recalling how fibrations are made, there is a commutative 
diagram 

~'~2(S2m+l) ' F k - l ( m )  '~ ' J k _ l ( S  2ra) 

~'~2(s2m+1 ) .. 4, ~ '~2(s2m+l) '~ s 2 m ( k - l )  i t ,  • ( s 2 m + l )  v S2m(k_l  ) 

such the upper row is essentially the first shift of  (1) and the lower row that of 
(2). Let  F'=Tt- l (Jk_t(S2m)) ,  and F"=rt-l(e2m(k-l)) .  Now Fk_l (rn) /F '= 

F" /F '  N F", the pair ( F ' , F '  N F") is fibre homotopy equivalent with 
['22($2m - 1) X (e 2m(k- o, s2m(k- O- 1), and hence F" /F '  A F" is homotopy equiva- 
lent with ~2($2m + 1) ~< s2m(k-1). Gray's map Fk_ l (m)-"  S 2ink- i is the composite 

Fk-  l(m ) -" Fk-  i( m )/F' --" ~'~2(s2m + I) ~( S2m<k - 1) ~ s2mk - 1. 

Since the pair (Jk- l(S2m) X S 2re(k- 1) Jk- 1(S2m) V S 2ra(k- 1)) is 2ink - 1 con- 

nected one may suppose that after deformation the coaction map ¢/: Jk-I(S  2m) --" 
Jk_l(S2m)vS 2re(k-l) has the property that if XEJk_2(S 2m) then ~,(x)= (x, .). 
Recall that 

~2( $2,  + 1) t~ S 2m~k- 1) = p(f~( S2m + 1)) U f~2( SZm ÷ 1) × S2mtk - 1), 

the intersection of  the designated subspaces being the fibre ~'~2(S2m + 1). Assum- 
ing ¥ is as above a(F') c P ( ~ ( S  2m + i)), a is fibre preserving, and the map 
(e2ratk-1), s2mtk-l) - 1).._~(s2m(k-l), . )  induced by taking the coaction and then 

projecting is of degree one. These things combine to mean that a induces a 
homotopy equivalence & : F"/F '  n F"  ~ ~2($2m + 1) ~ s2m(k - 1) upon smashing 

P(~')(S2m+I)) to  a point. This shows Gray's map is the same as ours in the 
homotopy category, and suffices to complete the proof  of  the proposition. 
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